Chevron Pipe Line Company – Hazard Analysis Procedure

GUG Version 1.5 [June 2012]
CPL Version 2.0 [effective January 1, 2013]
Contents

1.0 Purpose and Objectives ... 3

1.1 Scope ... 3

1.2 Requirements ... 3

1.3 Terms and Definitions ... 4

1.4 Roles, Responsibilities and Training Requirements .. 4

1.4.1 Initial Training .. 5

2.0 Standard Instructions ... 5

2.1 Performing a Planning Phase Hazard Analysis .. 6

2.1.1 Identifying the Task .. 7

2.1.2 Forming the Analysis Team .. 7

2.1.3 Breaking-down the Task .. 7

2.1.4 Identifying Potential Hazards ... 7

2.1.5 Developing Control Measures ... 8

2.2 Perform an On-site JSA .. 8

2.2.1 Introduction .. 8

2.2.2 Completing an on-site JSA involves the following activities: 9

2.3 Performing a Personal Hazard Assessment .. 9

2.4 Monitoring Effectiveness .. 10

2.4.1 Planning Phase HA Document Reviews ... 10

2.4.2 JSA Document Reviews .. 10

2.4.3 JSA Observation Reviews .. 10

3.0 Records .. 10

3.1 Required Records ... 10

3.2 Retention Requirements .. 11

4.0 Document Control Information .. 11

4.1 Document Change History .. 11

5.0 Document List ... 11

Appendix A: CPL Planning Phase Hazard Analysis Worksheet .. 13

Appendix B: CPL Job Safety Analysis Form ... 14

Appendix C: Risk Assessment .. 15

Appendix D: Risk Ranking Matrix (4x4) .. 16

Appendix E: Chevron Hazard Identification Tool ... 17

Appendix F: Think Incident Free (TIF) Analysis ... 19

Appendix G: On-site JSA Competency Development Model ... 20
Hazard Analysis

1.0 Purpose and Objectives

The purpose of this procedure is to ensure Hazard Analysis is used for the effective identification, mitigation, control and communication of hazards.

This procedure establishes requirements for hazard analysis. The objective of Hazard Analysis is to ensure proper consideration is given to the risks associated with completing a particular task. This procedure follows the three phases of Hazard Analysis, as it applies to our work; consisting of three specific activities that are recognized as separate, but complementary components of the Managing Safe Work (MSW) Process:

- Planning Phase Hazard Analysis;
- Job Safety Analysis (JSA); and the
- Personal Hazard Assessment

NOTE: Each upstream and gas strategic business unit (SBU) or location may have additional regulatory requirements.

1.1 Scope

This Hazard Analysis Procedure covers work performed by Chevron employees and their delegates and contractors within Chevron Upstream and Gas (U&G) operational control. Operational Excellence reporting boundary definitions can be found in the OE Data Reporting Standard. For contractor activities where Chevron does not have operational control, Chevron will encourage contractors to use hazard analysis tools.

This procedure does not apply to Facilities and Operations HES design reviews, Integrated Hazard Identification’s, or other risk assessment studies as defined in the Corporate OE Standard Process – HES Risk Management.

1.2 Requirements

To comply with this procedure, SBUs will meet the following requirements:

1. A hazard analysis appropriate to the phase of work shall be conducted.
2. A hazard analysis must consider actions as well as physical and environmental conditions.
3. Personnel performing hazard analysis shall be trained and competent in the roles for which they are responsible.
4. All JSAs must be developed or revised onsite by the personnel performing the work to ensure the systematic identification and mitigation of site-specific hazards before work begins.
5. A Job Safety Analysis (JSA) used onsite by an individual work crew shall address specific tasks.
6. Content of the JSA must be communicated to the work team and other affected parties immediately prior to beginning work. Communication must occur in a language appropriate for the work team so that they clearly understand the task hazards, control measures and actions required to conduct the work safely.
7. Individuals must perform a Personal Hazard Assessment before starting a work task.
1.3 Terms and Definitions

The following terms and definitions apply to the Upstream and Gas – Hazard Analysis Procedure:

Chevron Hazard Identification Tool - A tool to help persons while developing or reviewing a hazard analysis or JSA, or while conducting a Personal Hazard Assessment, to identify energy sources present in the work environment which may present potential hazards if released in an unplanned manner, or contacted in an unwanted way.

Hazard - A condition or action that has the potential for an unplanned release of, or unwanted contact with, an energy source that may result in harm or injury to people, property or the environment.

Hazard Analysis - A process used to assess and mitigate risks. It focuses on the relationship between the worker, the task, the tools, and the work environment.

Operating Procedure (OP) – An OP that includes a review equivalent to a hazard analysis that may be used as the planning phase hazard analysis for work. The OP must meet specific standards to ensure the required level of hazard and mitigation review has occurred.

Planning Phase Hazard Analysis – A hazard analysis usually conducted remotely by project management and subject matter experts, based on process and operational documentation and knowledge.

Job Safety Analysis - The JSA is a tool for analyzing a task. This on-site, site-specific, hazard analysis may be based on a review of planning phase hazard analyses, a Qualified Standard Operating Procedure (QSOP), or a previously developed JSA for the same task, if available.

Personal Hazard Assessment - A Personal Hazard Assessment is a self-assessment that provides an opportunity for the individual worker to focus on a task and ensure they are prepared to perform it safely. It is typically a reflective exercise undertaken to help each worker understand his or her responsibility for health and safety.

Risk Assessment - A qualitative or quantitative procedure that evaluates: what can fail or go wrong; the consequences of each event; the likelihood of each event occurring; and how the severity and likelihood combine to give an overall statement of risk.

Task - A task is a sequence of steps or activities to complete the work. Tasks are identified and evaluated to the appropriate level of detail.

Think Incident Free (TIF) – A tool that can be used by anyone in the workplace to identify hazards and unsafe behaviors and then make a plan to performing work without incident. Four points to consider for working safely are planning, state of mind, training and proper tools and equipment.

1.4 Roles, Responsibilities and Training Requirements

There must be clearly defined roles, and personnel must meet the training requirements of this procedure prior to starting work.

The following roles are specific to Hazard Analysis:

- Participant/User
- Facilitator

A single individual may fulfill more than one role as long as he or she meets the competency requirements and is able to fully meet multiple responsibilities. When selecting personnel for
these positions, consideration should be given to the candidate’s level of experience and past performance.

1.4.1 Initial Training
Personnel must meet the initial training requirements of this procedure prior to starting work. Refer to the U&G – Training Requirements Tool.

SBUs are encouraged to adapt standard training material as needed to address local procedures.
- Hazard Identification Tool
- Job Safety Analysis (JSA)
- Personal Hazard Assessment

A recommended on-site JSA competency development model based on training, field observations and coaching can be found in Appendix F.

2.0 Standard Instructions
This procedure follows the three phases of hazard analysis as it applies to work. From the initial planning phase, to the onsite Job Safety Analysis (JSA), to the individual worker’s Personal Hazard Assessment. Hazard analysis is critical to identifying potential hazards and developing actions and strategies to prevent incidents from occurring. Hazard analyses may also be used as a training tool for new employees, as the basis for health, environment and safety (HES) checklists, behavior based safety (BBS) observations and safety meeting topics, and to write HES standards and standard operating procedures (SOPs) for new or modified jobs. An example of a form for completing the Planning Phase Hazard Analysis, and subsequently the JSA can be found in Appendix A.

<table>
<thead>
<tr>
<th>Table 1. Summary of Hazard Analysis Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Method</td>
</tr>
<tr>
<td>Planning Phase Hazard Analysis</td>
</tr>
<tr>
<td>(e.g. Risk Assessment, Job Hazard Analysis, Safety Plan, Safety Instruction, QSOP)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Job Safety Analysis (JSA)</td>
</tr>
</tbody>
</table>
Analysis Method | When to use | Intent | Format |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPL – Hazard Analysis Procedure</td>
<td>prior to start of work</td>
<td>hazards and mitigations To address onsite conditions on the day of the work To identify mitigation measures, and assign responsible to verify they are in place To verify that work team has proper skill level and tools to complete the job safely</td>
<td>as low-risk. For low-risk work, may be an unwritten JSA, job site discussion, or a Personal Hazard Assessment, as determined by the SBU.</td>
</tr>
<tr>
<td>Personal Hazard Assessment (e.g. Think Incident-Free (TIF), Personal Safety Plan, Stop, Think, Go)</td>
<td>Anytime, including during the course of performing the work</td>
<td>To prompt workers to think before they act To ensure that the worker is looking for hazards while they are doing work To support Stop Work Authority and the Tenets of Operation</td>
<td>This is typically an unwritten self-assessment done as a reflective mental exercise by each worker immediately prior to beginning his or her specific activities. For low risk work, this may be the only hazard analysis conducted.</td>
</tr>
</tbody>
</table>

2.1 Performing a Planning Phase Hazard Analysis

A planning phase hazard analysis involves the following activities:

- Identifying the task
- Forming the team (for simple tasks, this may be one person)
- Breaking down the task into steps
- Identifying potential hazards
- Developing control measures to mitigate the identified hazards
- Conducting risk ranking (Optional)

Note: Information on conducting a Risk Assessment can be found in Appendix B.

CPL Blue Text

A written Planning Phase Hazard Analysis is required for project related work, where there is a work owner (e.g. Project Manager, Engineer, Construction Representative, Project Coordinator) and when the work activity and work tasks are associated with Safe Work Practices (Confined Space, Excavation, Isolation of Hazardous Energy, Hot Work, Electrical, Lifting and Rigging, Working at Heights, and Bypassing Critical Protections).

For project work managed and performed by CPL, the CPL - Planning Phase Hazard Analysis must be used to document the analysis.

For project work managed and performed by Contractors, the Contractor Job Safety Plan (CJSP) (formerly Job Site Safety Plan (JSSP)) must be used to document the analysis.

For non-project work, the work planning activities performed by a competent Person in Charge are considered to be the Planning Phase Hazard Analysis. These activities include,
but are not limited to the review of relevant CPL Safe Work Practices, Maintenance and Inspection Procedures, and other relevant safety procedures.

2.1.1 Identifying the Task
A task is a sequence of steps or activities to complete the work. Tasks are identified and evaluated to the appropriate level of detail. “Drilling a well” or “performing a shutdown on a gas plant” is too broad to be a single task, and tasks such as “turning on a switch” are too narrow for effective analysis. The appropriate level of detail for a task is typically the type of assignments that a supervisor would make (e.g., removing a pump for maintenance, collecting an oil sample from a vessel, or installing a blind in piping).

In the planning phase for a large scope of work (e.g., capital project), the hazard analysis may consist of a single assessment covering many tasks.

2.1.2 Forming the Analysis Team
Person(s) performing the analysis should:

- Be experienced and knowledgeable about the task and hazards
- Understand the hazard analysis procedure
- Be an experienced facilitator, if appropriate

When forming the team, consider factors such as the complexity of the task, the location of the work and the size of the workgroup. In addition to the person doing the job, team members should be selected as appropriate and may include other workers, supervisors and HES professionals. If the hazard analysis is being prepared for a task that will require a permit, the team should include participation by the Area Controller (a.k.a. Person in Charge) and Work Team Leader (a.k.a. Person Conducting the Work) who will be involved in the permitting. In some cases, it may be acceptable for an analysis to be prepared by one person.

The planning phase hazard analysis may be initiated in an office setting, and be based primarily on facility and process knowledge and documentation reviews; however, information obtained from site visits by the person conducting the hazard analysis may provide a more complete analysis.

2.1.3 Breaking-down the Task
Before the search for potential hazards begins, the task is broken down into a sequence of events consisting of the major steps, with each step describing what is being done. Begin by asking, “What step starts the task?” then, “What is the next basic step?” and so on. If too many steps result from the analysis (over 15), consider breaking that job into more than one task.

When beginning to document the analysis, describe and number each step on the analysis form. Each step tells what is done, not how. The description for each step should begin with an action word such as “remove,” “climb,” “open” or “weld.” The description of the step is completed by naming the item to which the action applies, for example, “remove extinguisher,” or “carry to fire.”

Check the breakdown of the steps with other team members, particularly someone who is knowledgeable about performing the task. Obtain agreement on the description of what is done and the order of the steps.

2.1.4 Identifying Potential Hazards
Once the basic steps have been determined, begin the search for potential and existing hazards.
Look at physical conditions (chemicals, tools, work space, etc.), environmental factors (heat, cold, noise, lighting, weather conditions, etc.) and actions or behaviors (need to stand on a slippery or unstable surface, extended reach to operate a valve, lifting bulky objects).

Additional information on increasing hazard identification skills is located in the MSW Support Materials.

An example of identifying hazards using the Chevron Hazard Identification Tool can be found incorporated into the form in Appendix A.

2.1.5 Developing Control Measures

The next step in a hazard analysis is to identify control measures, which exist, or should be put in place, in order to eliminate potential hazards, or mitigate them to an acceptable level of risk. Identifying control measures for each hazard, even those already controlled will facilitate understanding and communication. The principal control measures detailed below represent a hierarchy (order of preference) in which they should be considered:

- Determine if the work is necessary - eliminate unnecessary work that adds risk and does not contribute to achieving the desired result.

- Change the physical conditions that create the hazards – change in tools, materials, equipment, layout or location. This is the preferred approach until there is general agreement that work conditions are as safe as reasonably practical.

- Change the work procedure – ask, “What should the employee do, or not do, to eliminate this particular hazard or prevent this potential accident?” The answer might be as simple as standing to the side when opening the valve, or getting a good stance before lifting an item.

- Add barriers between the hazard and the receptors – fire blankets, warning tape, personal protective equipment (PPE), etc.

- Find a completely new way to do the job – if the above steps have not yielded a safe, efficient way to perform the task, and then look at the task itself. Determine the goal of the job and analyze alternative ways of reaching this goal.

Control measures should be stated so that people clearly understand what to do. There is usually not enough space on the assessment form to explain how to do it. The needed level of detail should be included in procedures, manuals, employee training, or in some other form so that everyone understands how to do the task safely.

 NOTE: Identifying associated procedures (when/ where applicable) is a viable mitigation when incorporated by review and thorough understanding of individuals involved in job task planning.

2.2 Perform an On-site JSA

2.2.1 Introduction

The Job Safety Analysis (JSA) is the final part of analyzing a task prior to starting job. This analysis occurs at the work site prior to work beginning, and involves those individuals doing the work and communication with those that may be affected. The JSA is performed because the planning phase hazard analysis may not always identify onsite or working environment hazards, as they may not always be apparent or realized during the planning process. For example:

- Other activities in the same location may require additional controls related to communication or safety barriers
• Environmental factors e.g. wind speed and direction may have an additional impact on the work
• Technical aspects of the job may introduce additional hazards that require onsite changes to be considered. These additional hazards should be assessed using the same method as previously used in the planning phase hazard analysis process
• Other affected and/or knowledgeable persons may identify additional hazards

2.2.2 Completing an on-site JSA involves the following activities:
• For work determined to be low-risk, workers may use an unwritten hazard analysis, Personal Hazard Assessment, job site discussion, or other undocumented hazard analysis method.
• For work not determined to be low-risk, completion of a written JSA form with the following elements:
 • Title and summary description of the task(s) to be performed
 • The Name of the person leading the work, the work location, permit #(s) and date
 • A list of the steps required to accomplish the task(s)
 • A list of potential hazards associated with each step
 • A list of controls or mitigations for each potential hazard
 • Acknowledgement of understanding by each member of the work team through signature on the form
 • A risk assessment for each step (optional)

 Note: Information on conducting a Risk Assessment can be found in Appendix B.

• Conducting an Onsite Briefing/Toolbox Talk prior to commencing the work, to ensure that the work team is aware of the hazards and control requirements. The onsite pre-job briefing should be carried out by the Work Team Leader and include the following:
 • Reviewing the JSA with the work team and other potentially affected persons
 • Assessing any additional hazards at the worksite
 • Ensure the appropriate control measures are in place
 • Assign responsibility to ensure control measures are in place
 • Emphasize the use of Stop Work Authority (SWA), and identify and discuss examples of actions or conditions which might lead to use of SWA during this job
 • Confirm work-party understanding
 • Obtain the signatures of all the work-party on the JSA documentation

• Conducting additional reviews if:
 • Job scope changes significantly
 • New personnel are added to the work party
 • Site conditions change beyond those originally identified
 • A near miss, incident, or other work stoppage occurs
 • A concern is raised as the result of a Personal Hazard Assessment

• Following the work, reviewing the activity and agreeing lessons learned for continual improvement;

• Document lessons learned and update planning phase hazard analyses, SOPs, etc. for future use.

2.3 Performing a Personal Hazard Assessment
Each individual should perform a Personal Hazard Assessment prior to beginning work tasks, and regularly reassess the work environment. Personal Hazard Assessments encourage
individual employees to reflect on, and take ownership of identifying and ensuring controls are in place for the hazards to which they may be exposed.

The minimum steps of an effective Personal Hazard Assessment are:

- Understanding the method to perform the task safely
- Determining the potential hazards
- Determining what can be done to eliminate the hazard
- Acting to prevent any negative consequences
- SBUs may use a variety of tools to support their Personal Hazard Assessments.

Appendix E contains an example of a Personal Hazard Assessment using the Think Incident Free (TIF) tool.

2.4 Monitoring Effectiveness

2.4.1 Planning Phase HA Document Reviews

Planning Phase Hazard Analyses often form the basis for subsequent on-site JSAs, as well as the hazard analyses incorporated into QSOPs, therefore, SBUs should consider assigning responsibility to validate they are prepared correctly, this procedure is followed, and that the results are clearly communicated to stakeholders.

A potential option designed to help ensure these hazard analyses are completed effectively can be found in the example Hazard Analysis Team Charter.

These HA document reviews should be initiated and completed as defined in the SBU verification matrix. HA reviews should be documented and submitted to the SBU designated location, for review by the SBU Process Sponsor and Advisor or designee.

2.4.2 JSA Document Reviews

JSA document reviews will be used periodically (as determined by the SBU) by Supervisors and the MSW Process Sponsor/Advisor to provide evidence of consistency in developing effective JSAs. Note: The onsite JSA documents are only one aspect of the JSA process, and these reviews may not provide insight into the communication of the JSA or any pre-job briefings/discussions that may have been conducted. Results of the document reviews should be regularly communicated to the workforce to provide for continuous improvement.

2.4.3 JSA Observation Reviews

As part of the recommended competency development activity, regular reviews of the findings of JSA field observations should be performed and communicated to Supervisors and the MSW Process Sponsor/Advisor to provide evidence of consistency and effectiveness of communication of JSAs. Results of the observation reviews should be communicated to the workforce.

3.0 Records

3.1 Required Records

The following records will be kept:

- Copies of Planning Phase Hazard Analyses, JSAs and other associated documentation should be maintained as defined by the SBU.
3.2 **Retention Requirements**

In order to facilitate the review process and improve the quality of assessments, hazard analyses should be retained at an SBU designated location for one year or as otherwise defined by the SBU.

CPL Blue Text

CPL record retention requirements will be a minimum of 2 years.

4.0 Document Control Information

<table>
<thead>
<tr>
<th>Description</th>
<th>U&G Common</th>
<th>SBU Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval Date</td>
<td>01 October 2011</td>
<td></td>
</tr>
<tr>
<td>Next Approval Due</td>
<td>February 2012</td>
<td></td>
</tr>
<tr>
<td>Control Number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 Document Change History

Changes to this document are listed in the table below in reverse order by change date.

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision Number</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 February 2008</td>
<td>1.0</td>
<td>Initial release of Global Upstream process</td>
</tr>
<tr>
<td>30 May 2008</td>
<td>1.1</td>
<td>Add link to hazard Analysis Risk Matrix</td>
</tr>
<tr>
<td>8 December 2008</td>
<td>1.2</td>
<td>Added bookmarks for OE Mentor</td>
</tr>
<tr>
<td>01 October 2011</td>
<td>1.3</td>
<td>Added language clarification and made formatting changes</td>
</tr>
<tr>
<td>11 November 2011</td>
<td>1.4</td>
<td>Updated to new U&G template</td>
</tr>
<tr>
<td>01 June 2012</td>
<td>1.5</td>
<td>Updated to include Corporate Required MSW Process Requirements</td>
</tr>
</tbody>
</table>

5.0 Document List

This is a complete list of the documents referenced in this process.

<table>
<thead>
<tr>
<th>Procedure/Attachment Title</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE Data Reporting Standard</td>
<td>OE Data Reporting Standard</td>
</tr>
<tr>
<td>U&G Training Requirements Tool</td>
<td>UG_MSW_TrainingRequirementsTool.doc</td>
</tr>
<tr>
<td>U&G – MSW SWA Procedure</td>
<td>UG_MSW_StopworkAuthorityProcedure.doc</td>
</tr>
<tr>
<td>Procedure/Attachment Title</td>
<td>File Name</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Example Hazard Analysis Team Charter</td>
<td>Hazard Analysis Team Charter</td>
</tr>
<tr>
<td>MSW Process Flow Diagram</td>
<td>MSW Process Flow Diagram</td>
</tr>
<tr>
<td>Hazard Identification Tool</td>
<td>Hazard Identification Tool</td>
</tr>
</tbody>
</table>
Appendix A: CPL Planning Phase Hazard Analysis Worksheet

<table>
<thead>
<tr>
<th>Work Activity</th>
<th>Potential Hazards</th>
<th>Task Description (JSA Title)</th>
<th>Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle/Equipment movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water/Wind movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body positioning/ergonomics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual Lifting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotating equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed springs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power/hand tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power lines (above/below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energized equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static charges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vessels/Tanks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe Work Practices</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANNING HAZARD ANALYSIS

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: CPL Job Safety Analysis Form

Job Safety Analysis

<table>
<thead>
<tr>
<th>Field Team</th>
<th>Date</th>
<th>Job Description</th>
<th>Potential Hazard(s)</th>
<th>Recommended Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence of Job Steps

Hazard Identification Tools

- **Gravity:** Falling objects, roofs to collapse, people to trip & fall
- **Motions:** Movement of vehicles, vessels, water, wind, or body
- **Electrical:** Rotating equipment, drive belts, conveyors, motors, or compressed springs
- **Pressure:** in piping, compress cylinders, pneumatic and hydraulic equipment
- **Combustible:** including ignition sources, hot or cold surfaces, steam, friction, and weather
- **Chemical:** Vapors, combustibles, corrosives, welding fumes
- **Biological:** Bacteria, viruses, animals, insects, contaminated food, water
- **Radiation:** Solar rays, microwaves, x-rays, welding arcs
- **Sound:** Equipment noise, vibration, high-pressure releases, voice communication

In case of an incident, contact the following:

- CPL Rep: Ph #
- Contr. Rep: Ph #
- Early Injury Management: Ph #

What conditions, job changes, or job distractions will trigger the use of Stop Work Authority?

Participants (signatures required by all affected personnel)

-
-

CPL Version 2.0 [effective January 1, 2012]

Printed 14 December 2012. Uncontrolled when printed
cpl_msw_hazard_analysis_procedure_ (version 2.0 final 12-7-12).docx
Appendix C: Risk Assessment

An additional step that may be included in a hazard analysis is an assessment of the risk associated with each job step. Control measures are intended to either eliminate the risk of the job (task) or reduce it to an acceptable level. Using an approved Risk Matrix as shown on the next page, each hazard identified in a planning phase hazard analysis or in a JSA is assessed for the risk before any control measures are applied.

Once the control measures are applied, the Risk Matrix is used to determine the potential severity and the likelihood of the risk for each step in the job, which leads to a residual risk ranking code of Low, Medium or High (L, M, and H). The consequence effect from a hazard does not normally change through the implementation of a control, only the likelihood of the consequence occurring. Where residual risk is determined to be acceptable and as low as reasonably practicable, the work may continue based on agreement from the hazard analysis team. If the residual risk is too high then the work should be scheduled for an alternate time when the risk can be adequately controlled.
Appendix D: Risk Ranking Matrix (4x4)
Appendix E: Chevron Hazard Identification Tool

Hazard identification tools provide a structured approach for identifying hazards and may provide assistance when creating a hazard analysis.

The Chevron Hazard Identification Tool is based on first identifying energy sources in the workplace, which if contacted in an unwanted way or released in an unplanned manner can pose a hazard. Look at physical conditions (chemicals, tools, stored pressure, elevation, etc.), environmental factors (heat, cold, noise, lighting, wet conditions, etc.) and actions or behaviors (equipment or personnel movement, etc.). Identify all energy sources associated with each step regardless of the level of control present, and then identify potential hazards based on unwanted contact or an unplanned release of energy.
Hazard Identification Tool

Gravity
The force caused by the attraction of all other masses to the mass of the earth.
Examples: falling object, collapsing roof, and a body tripping or falling

Motion
The change in position of objects or substances.
Examples: vehicle, vessel, or equipment movement; flowing water, wind, and body positioning when lifting, straining, or bending

Mechanical
The energy of the components of a mechanical system, i.e., rotation, vibration, or motion within an otherwise stationary piece of equipment or machinery.
Examples: rotating equipment, compressed springs, drive belts, conveyors, and motors

Electrical
The presence and flow of an electric charge.
Examples: power lines, transformers, static charges, lightning, energized equipment, wiring, and batteries

Pressure
Energy applied by a liquid or gas that has been compressed or is under a vacuum.
Examples: pressure piping, compressed cylinders, control lines, vessels, tanks, hoses, and pneumatic and hydraulic equipment

Temperature
The measurement of differences in the thermal energy of objects or the environment, which the human body senses as either heat or cold.
Examples: open flame, ignition sources: hot or cold surfaces, liquids, or gases; steam, friction, and general environmental and weather conditions

Chemical
The energy present in chemicals that inherently, or through reaction, has the potential to create a physical or health hazard to people, equipment, or the environment.
Examples: flammable vapors, reactive hazards, carcinogens or other toxic compounds, corrosives, pyrophoric, combustibles, oxygen-deficient atmospheres, welding fumes, and dusts

Biological
Living organisms that can present a hazard.
Examples: animals, bacteria, viruses, insects, blood-borne pathogens, improperly handled food, and contaminated water

Radiation
The energy emitted from radioactive elements or sources and naturally occurring radioactive materials (NORM).
Examples: lighting issues, welding arcs, solar rays, microwaves, lasers, X-rays, and NORM scale

Sound
Sound is produced when a force causes an object or substance to vibrate and the energy is transferred through the substance in waves.
Examples: equipment noise, impact noise, vibration, high-pressure release, and the impact of noise to communication

Hazard
A condition or action that has the potential for an unplanned release of, or unwanted contact with, an energy source that may result in harm or injury to people, property, or the environment.

Hierarchy of Controls
1. Remove the energy source
2. Prevent the release of energy
3. Protect from the release
4. Use Stop Work Authority

© 2009 Chevron Energy Technology Company All rights reserved CE000169 07/08 I0008 Poster B - English
Appendix F: Think Incident Free (TIF) Analysis

FOUR POINTS OF “THINK INCIDENT FREE”

Planning

Stop Work Authority

OE Tenets of Operation

State of Mind

Think Incident Free

Training

Proper Tools and Equipment

THINKING BEFORE ACTING IS THE KEY TO WORKING SAFELY

THINK INCIDENT FREE

Four points to consider for working safely:

1. PLANNING
 • Do I understand the task and how to perform it?
 • Have I identified all hazards associated with the task?
 • How will I eliminate the hazards associated with this task?
 • Have I planned all job tasks?
 • Have I considered all safe work practices that apply to this task?
 • Do I need help to do this work safely?

2. TRAINING
 • Have I been trained to do this work?
 • Have I been trained to use the equipment or tools required?
 • Have I been trained on the procedures of this work?

3. PROPER TOOLS & EQUIPMENT
 • Do I have the Personal Protective Equipment (PPE) I need?
 • Do I have the right tools and equipment?
 • Have I checked if tools and equipment are in good working condition?

4. STATE OF MIND
 • Will I give my full attention to this task?
 • Will I stop and redo my plan if something unforeseen happens?
 • Am I meeting or exceeding safety requirements for this task?
Appendix G: On-site JSA Competency Development Model

Through various lagging metric analyses, inadequate JSAs continue to be seen across U&G as a significant issue. The following information is provided in order to specifically address opportunities to improve the quality of on-site JSAs.

While training on the development and documentation of an on-site JSA is currently provided in the SBUs, there is an opportunity to go beyond training to develop competency on JSA development and delivery. Competency not only involves training on how to complete a JSA, but also requires practical knowledge of the tasks and hazards. In addition, a demonstration of understanding of the hazard analysis procedure and the ability to communicate with diverse work teams is also critical.

Definitions

- Competencies define the applied knowledge, skills and behaviors that enable people to successfully perform their work.
- Knowledge is the information that allows a person to perform from an informed perspective.
- Skills are demonstrated abilities or proficiencies (e.g., Identification of Tasks at appropriate level of detail, Hazard Identification, etc.)
- Behaviors are the manner of conducting oneself, the response of an individual to his/her environment (e.g., Communicates Clearly, Fosters Collaborative Relationships, etc.)

Development Plan

Competency is developed in stages, and while sometimes advantageous, not all personnel involved in the JSA process require the same level of competency. A summary of competency levels is provided in Table 1.

NOTE: All personnel should be able reach the Basic Application level, and be seen as active participants in the on-site JSA process.

Table 1. Competency Level Summary

<table>
<thead>
<tr>
<th>Competency Level</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
<td>A basic conceptual understanding of a JSA</td>
<td>Overview presentation, general knowledge</td>
</tr>
</tbody>
</table>
| Knowledgeable | Understanding of the need for a JSA, the steps required to complete a JSA, the task to be performed, the typical hazards and controls associated with the task, and the Hazard Identification Tool | Learning activities:
 - Web-based training
 - Instructor-led/classroom coursework
 - Field discussions |
| Basic Application | Demonstrated understanding of JSA process | Participation in field activities as a member of a team | |
| Demonstrated Comprehension| Demonstrate the ability to materially participate in development of a JSA | Observation and mentoring by work team leader who leads development and communication of JSA |
| Skilled Application | Leading development (acting as a facilitator) of JSAs, and demonstrating ability to communicate with and engage all members of work | Observation and coaching by competent personnel from outside the work team, of leader of JSA development |
| team | Analysis and Evaluation | Able to evaluate documentation for quality, conduct observations on peers and provide coaching to improve the process | The prize! If we can get a sufficient “critical mass” of personnel to this level, the process will be improved. |

In order to identify personnel capable of progressing to a higher level of competency, observations can be used to determine who either based on current ability or through mentoring and coaching, has the ability for further development.
Field Observation and Coaching Guide

Planning – To identify what to observe, consider the following:

<table>
<thead>
<tr>
<th>Type of Job</th>
<th>Equipment Involved</th>
<th>Characteristics of Workers</th>
<th>Situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- What scheduled jobs relate to identified risks for your operations?</td>
<td>- Do any jobs involve tools or equipment linked to previous incidents (e.g., cranes, man-lift, backhoe, etc.)?</td>
<td>- Is there an employee, or contractor crew you have not observed?</td>
<td>- Is work being done in a new location?</td>
</tr>
<tr>
<td>- Is there unscheduled work that warrants observation?</td>
<td>- Does the job require isolation of equipment or energy sources?</td>
<td>- Is there a crew you want to follow-up from a previous observation?</td>
<td>- Is work near a highly populated area?</td>
</tr>
<tr>
<td>- Is there scheduled work by non-core contractors to observe?</td>
<td>- Does the job require bypassing critical protections?</td>
<td>- Are there any SSEs working?</td>
<td>- Can the work be affected by adverse weather conditions?</td>
</tr>
<tr>
<td>- Is there routine work planned that has recently resulted in an incident or near miss?</td>
<td></td>
<td>- Is there a worker or crew that hasn’t worked here recently?</td>
<td>- Does the work involve a new or revised SOP or standard?</td>
</tr>
<tr>
<td>- Is there routine work that has not been recently observed based on your defined schedule?</td>
<td></td>
<td>- Is there a worker or crew with a history of previous incidents?</td>
<td>- Are there multiple workgroups involved?</td>
</tr>
</tbody>
</table>

Planning – Before Going Out Consider the following:

<table>
<thead>
<tr>
<th>Do you need SME input about the job you plan to observe?</th>
<th>What information do you need about the crew you will observe?</th>
<th>Confirm the job start time</th>
</tr>
</thead>
<tbody>
<tr>
<td>What key job steps or hazards relate to this work?</td>
<td>What’s the crew’s safety record?</td>
<td>Determine of you want to be there at the beginning or after the job starts?</td>
</tr>
<tr>
<td>Are there procedures you could review in advance?</td>
<td>Is this a regular crew or one that works for multiple companies?</td>
<td>Make sure you have a phone number (e.g., Permit Approver, Field Specialist, Maintenance Planner, contractor supervisor) so you can locate crew if needed.</td>
</tr>
<tr>
<td>Do you have a defined scope of work or work order documentation?</td>
<td>Is anyone on the crew just back from vacation? Sick leave?</td>
<td></td>
</tr>
</tbody>
</table>
Assess QUALITY of Pre-Job Safety Planning

<table>
<thead>
<tr>
<th>Get Oriented to the Job</th>
<th>Confirm the Major Job Steps</th>
<th>Identify the Hazards</th>
<th>Identify Their Mitigation Plan</th>
<th>Review Their JSA</th>
<th>Observe Their Work</th>
<th>Provide Feedback to Whole Crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>At job site with the Person Leading Work</td>
<td>At job site with full crew, but ask random individuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do they know what to do?
- See the big picture?
- Crew experience with this task?
 - How often?
 - Last time?
 - Training?
 - Experience with this equipment?
 - SSEs?
- Crew make-up?
- First language?
- Crew experience with this SBU?
- Crew experience with this CVX?

Summary:
Right scope?
Right tasks?
Right people?
Right timeframe?

Do they know how to do it?
- Get them to point out the major steps (visualize)
 - Your understanding of the steps for this job?
 - Who is doing what?
 - Your role on this step?
 - How does the work of others affect your work?
 - Right tools & equipment in place?
- If the job is already in progress, ask:
 - What step are you working on now?
 - How long will the job take?
 - Using written procedures?
 - If so, which ones?

How they can get hurt doing it?
- Their most critical hazards?
- Test against random job Steps
- Pinpointed?
- Other hazards not mentioned?
- Other hazards with tools & equipment?

Sample Questions
- Most hazardous part of this job?
- Of any specific step?
- Hazards seen before on jobs like this?
- What tools did you use to help identify hazards (e.g., Hazard Wheel, TIF card, etc.)? How did you use this tool?
- What did you find?

Do they know how to keep safe?
- Mitigation plans for hazards?
 - Cookie cutter vs. specific?
 - PPE needed for this task?
 - When mitigation will be done?
 - How?
- Communication strategy for hazards, mitigations?

Did they write it down?
- Is JSA consistent with dialogue?
 - Validate scope
 - Did the work order scope the job properly?
 - Job steps need to be added?
 - Right number of crew?
 - Right tools & equipment?
 - Right sequencing with other crews?
 - JSA reflects changes in scope beyond work order?
- Provide feedback on thoroughness of JSA
 - Correct inconsistencies on form or discuss with crew

Are they following their pre-job safety plan?
- Are they performing steps based on preplanning?
- Are they mitigating the hazards as necessary?
- Are their mitigation actions preventing or controlling the hazard?
- Are other risks or unidentified hazards occurring?
- Do you note scope or conditions changes?
 - If so, do they discuss it?
 - Do they update the JSA?

Use a positive feedback model:
- Find something positive they’ve done and give them feedback
- Ask crew what they would do differently (i.e., how to make it safer next time)
- Pinpoint 1 or 2 big things to work on (i.e., what’s the takeaway?)
- Thank the crew for taking time away from their job to talk with you about safety

Document Observation – Immediately after the Observation
- Complete the observation form in private
- Note technical safety issues you need to know more about
- Note any action items
- What feedback from the form needs to be shared with the:
 - Permit Approver
 - Person Leading Work or Contractor Supervision
- Submit observation form for review/analysis per SBU plan
Observations of on-site JSA

Observation of the on-site JSA process is time-consuming, and should only be conducted by individuals with demonstrated competency (e.g. SME, experienced HES personnel, etc.). Therefore, this process requires a significant commitment of resources to be successful.

Observations should be performed consistently, using a standardized form to focus observers on JSA development and execution. The following elements are critical to a successful observation:

- Identify specific jobs to be observed (high-risk, non-routine, incident history, etc.)
- Gather background information
- Schedule to observation with the work team
- Establish a relationship with the Supervisor and work team
- Get oriented to the job
- Confirm the major job steps
- Identify the hazards
- Identify the mitigations/controls
- Review the JSA form
- Observe the pre-job meeting and communication
- Observe the work
- Provide feedback to the supervisor and work team
- Document the observation

An example of an observation form can be found on the following pages.
Current SBU Risk List

<table>
<thead>
<tr>
<th>Risks & Key Behaviors</th>
<th>Yes</th>
<th>No</th>
<th>Comments (If “No,” record why)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety Observation Form—Revision 4.2—7/12/10

General Information

<table>
<thead>
<tr>
<th>Observer:</th>
<th>Who is working?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contractor:</td>
</tr>
<tr>
<td>Observation Date:</td>
<td>Crew Pusher:</td>
</tr>
<tr>
<td></td>
<td>Permit Approver:</td>
</tr>
<tr>
<td>Duration of Observation:</td>
<td>CVX Employees</td>
</tr>
<tr>
<td>Site Location:</td>
<td>Permitted Job?</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Number of people observed:</td>
<td>N</td>
</tr>
<tr>
<td>Names of SSEs Present:</td>
<td>Name of Mentor Assigned:</td>
</tr>
<tr>
<td>Target Hazard(s):</td>
<td></td>
</tr>
</tbody>
</table>

Part 1: Quality of Pre-Job Safety Planning (How well did the crew prepare before starting the work?)

1. **Steps Identified?**
 - | Y | N |
 - Missing: | | |
 - Too general | | |
 - Not in sequence | | |
 - Other: | | |

2. **Hazards identified (for steps identified)?**
 - | Y | N |
 - Missing: | | |
 - Too general | | |
 - Not in sequence | | |
 - Other: | | |

3. **Mitigation identified (for hazards identified)?**
 - | Y | N |
 - Missing: | | |
 - Too general | | |
 - Not in sequence | | |
 - Other: | | |
Part 1: (CONT'D.)

<table>
<thead>
<tr>
<th>4. Additional</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Dialogues with random crew members confirmed shared understanding of the steps, hazards & mitigations (i.e., consistency in responses)</td>
<td>JSA covered wrong job</td>
<td>Crew began work before writing JSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JSA was not written</td>
<td>Steps, hazards & mitigations not correlated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JSA written but not available</td>
<td>Crew member signature missing on JSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canned JSA missing site/job-specific information</td>
<td>Other:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JSA covered too much work</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Job inadequately scoped</td>
<td></td>
</tr>
</tbody>
</table>

Part 2: Adherence to Pre-Job Safety Planning

(How well is the crew following their safety planning during the work?)

<table>
<thead>
<tr>
<th>What job step(s) did you observe?</th>
<th>Did they perform this step based on their pre-planning?</th>
<th>Did they mitigate the anticipate hazard effectively?</th>
<th>Did unplanned hazards occur?</th>
<th>Did they mitigate the unplanned hazard?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y or N</td>
<td>Y or N</td>
<td>Y or N</td>
<td>Y or N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Missed hazard:
- Missed mitigation:
- Missed hazard:
- Missed mitigation:

Part 3: Enure Update of Pre-Job Planning When Scope or Conditions Change

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>Did scope or conditions change during or before your observation? If yes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Missed hazard:
- Missed mitigation:
- Missed hazard:
- Missed mitigation:

Part 4: Additional Questions Regarding the Crew or a Crew Member

- Missed hazard:
- Missed mitigation:

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>Did the crew(s) modify the written JSA form appropriately before you coached or questioned them?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Missed hazard:
- Missed mitigation:

Part 5: Follow Up for Observer

1. What good ideas or Best Practices emerged from this observation?
 Categories to check:
 - R+:
 - ∆:

2. Did you/will you provide feedback to the Permit Approver? Y N
 - R+:
 - ∆:

3. What feedback needs to be shared with contractor company?
 Categories to check:

4. What action items do leaders need to take, based on this observation?
 Categories to check:

5. Have you observed this Crew Pusher before? Y N
 If Y, are the behaviors you coached on previously performed correctly now? Y N

6. What talking points can you share at a morning meeting? (Notation, not for database.)